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Realistic spin glasses below eight dimensions: A highly disordered view
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By connecting realistic spin glass models at low temperature to the highly disordered model at zero tem-
perature, we argue that ordinary Edwards-Anderson spin glasses below eight dimensions have at most a single
pair of physically relevant pure states at nonzero low temperature. Less likely scenarios that evade this
conclusion are also discussed.
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I. INTRODUCTION

Rigorous @1,2# and nonrigorous@3# analyses ruling out
mean-field pictures~for an overview, see@4–6#! of short-
ranged finite-dimensional spin glass models leave open
question of whether there is a single pair or infinitely ma
pure states at low temperature~assuming that spin flip sym
metry is indeed broken!. The droplet-scaling picture@7–9#
asserts the existence of at most a single pair in all dimens
@10,11#, but the same conclusion might arise independen
of the other predictions of droplet-scaling. On the other ha
if infinitely many pure states occur~for some dimensiond
and temperatureT), they should do so in accord with th
chaotic pairs picture@2,12,13#, in which only a single pair is
seen in typical large finite volumes, with the particular p
changing chaotically with volume.

In this paper we present an analysis that suggests no
tipair pictures should occur below eight dimensions. T
analysis is based on relating nonzero temperature G
states of Edwards-Anderson~EA! spin glass models@14# to
zero-temperature ground states of the highly disorde
model @15,16#. The number of ground state pairs in th
highly disordered model is known to be one ford,8 and
~uncountably! infinite for d.8 @15,17#. The relation is such
that the number of ground states in the highly disorde
model should serve as an upper bound for the numbe
~physically relevant! pure states of ordinary EA spin glass
at low butnonzerotemperature. We make no claim about t
number of ground states of the ordinary models atzerotem-
perature~except by other arguments ford52 @18#!.

The idea behind the analysis is as follows. We constru
one-parameter family of EA models, parametrized byl(b),
whereb is the inverse temperature, such thatl→` ~slowly!
asb→` in a way to be specified shortly. The construction
such that for any finiteb>b0, the model is expected to hav
the same thermodynamic behavior as the ‘‘ordinary’’ E
nearest-neighbor Ising spin glass in the same dimension
responding tol(b0), in the sense that if the ordinary EA
model is in a low-temperature broken-symmetry spin gl
phase atb0, our model should be also, and the number a
organization of pure states in the two models should be id
tical. At T50 ~i.e., b5`), our model becomes the highl
disordered spin glass@15,16#, whose ground state structure
1063-651X/2000/63~1!/016101~9!/$15.00 63 0161
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known @15,17#. So the behaviors of the two models ma
diverge atT50, i.e., the ground state structure of the high
disordered models may differ from that of the ordinary E
spin glass. But the crucial point is thatany T.0 Gibbs mea-
sure, restricted to any finite volume, of our model becom
supported, as T→0, on spin configurations that are groun
states of the highly disordered model within that volume.

This results in three possible conclusions, any of which
interesting. The most reasonable follows from the natu
expectation that the number of ground states is at leas
great as the number of pure states at low temperatures;
the number of ground states in the highly disordered s
glass should give an upper bound to the number of lo
temperature pure states in an ordinary EA model.~There
would, however, be no implication for the number ofground
states in the EA model atT50.! Because the highly disor
dered spin glass has only a single pair of ground states be
eight dimensions@15,17,19#, the conclusion would be tha
the EA spin glass has no more than a single pair of p
states for alld,8 at very low temperature. This conclusio
would extend tod58 if it were shown that the highly dis
ordered model has only a single pair of ground states als
that dimension.

We will discuss below why the analysis and this conc
sion should apply only toincongruent@20# pure states. Two
distinct pure states that are not global flips of each other m
be either incongruent or regionally congruent. Spin config
rations chosen from incongruent pure states have a non
ishing density of relative domain walls, i.e., couplings sat
fied in one but not the other spin configuration; otherw
they are regionally congruent. If incongruence occurs
should be generated using different sequences of coup
independent boundary conditions, but to see regional con
ence should require choices of boundary conditions that
coupling dependent.

Two other possibilities, less straightforward but also
triguing, could conceivably occur. One of course is that
supposition that the number of~incongruent! ground states a
T50 is no smaller than the number of~incongruent! pure
states at lowT.0 does not hold for this class of model
Another is that there may be no continuity or even mono
nicity at all in the numberof pure states as a function o
©2000 The American Physical Society01-1
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C. M. NEWMAN AND D. L. STEIN PHYSICAL REVIEW E63 016101
temperature in the spin glass — perhaps the most interes
but also least likely of the three possibilities raised here@21#.

All three of these conclusions will be discussed in grea
detail; we now turn to a discussion of the construction of
class of models to be analyzed.

II. MODEL

We will study the Edwards-Anderson~EA! Hamiltonian
@14# on Zd, the cubic lattice ind dimensions,

HJ~s!52 (
^x,y&

Jxysxsy , ~1!

whereJ denotes a realization of the couplingsJxy and where
the brackets indicate that the sum is over nearest-neig
pairs only, with the sitesx,yPZd. We will take the spinssx
to be Ising, i.e.,sx561.

Equation~1! is the EA Ising Hamiltonian for an infinite
volume spin glass onZd; we also need to define the E
model on a finite volume, given specified boundary con
tions. LetLL be a cube of side 2L11 centered at the origin
i.e., LL5$2L,2L11, . . . ,L%d. The finite-volume EA
Hamiltonian is then just that of Eq.~1! confined to the vol-
ume LL , with the spins on the boundary]LL of the cube
obeying the specified boundary condition.~The boundary
]LL of the volumeLL consists of all sites not inLL with
one nearest neighbor belonging toLL .)

The couplingsJxy are quenched, independent, identica
distributed random variables; throughout the paper we
assume their common distribution to be symmetric ab
zero. Most studies use either the Gaussian or6J distribu-
tions, under the assumption that the qualitative thermo
namic properties in fixed dimension — existence of a ph
transition at someTc(d) ~whose value, but presumably no
its existence, will depend on the nature of the distributio!,
the presumed broken spin-flip symmetry~i.e., a nonzero EA
order parameterqEA) below Tc , the number of pure state
below Tc , and so on — will be the same for any ‘‘reaso
able’’ coupling distribution. Because this remains an
sumption, there is no precise definition of ‘‘reasonable,’’ b
the expectation is that any distribution that is symme
about zero and falls off sufficiently quickly for larger cou
pling magnitudes will all exhibit similar spin glass behavio
Thus, for example, a uniform distribution supported o
@21,1# is expected to have the same basic thermodyna
properties as the6J or Gaussian spin glasses. We proce
using this assumption~or weakened versions of it!.

We depart from previous studies in parametrizing the c
pling distribution through the variablel(b), with l→` as
b→`. The couplingsJxy are defined through the relatio
~cf. @15#!

Jxy
l(b)5exycl(b)e

2l(b)Kxy, ~2!

wherecl(b) is chosen to ensure that the model has a sens
thermodynamic limit~i.e., a finite energy and/or spin! when
b→`, andexy andKxy are two sets of independent, iden
cally distributed~i.i.d.! random variables. Each variableexy
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takes on one of the two values61 with equal probability,
and theKxy can be chosen from any continuous distributi
~e.g., uniformly from@0,1#) so that the distribution of the
Jxy’s is reasonable, as discussed above. Two examples
be given shortly.

Our general approach is to start with a ‘‘typical’’ EA
model at l(b0)51, and then embed this within a one
parameter family of models that has a known ground s
structure@corresponding tol(`)5`#. Let us denote byJ0 a
given random coupling at the origin connecting to a specifi
nearest-neighbor site. By Eq.~2!, for a given realization of
the random variablese and K, we have J05e0uJ0u
5e0c1e2K0 (c1 can be taken equal to 1!. After a rescaling of
the temperature, we have

J0
l5e0cluJ0

lu5e0cle2lK0. ~3!

We will see that a choice ofcl;1/uJ0ul, where an overbar
denotes an average over coupling realizations, will ensu
sensible thermodynamics for the model in the limit of ze
temperature~providing l increases slowly asb→`).

Note that whenl50 the model becomes the6J model
for any starting choice of coupling distribution. Of more re
evance is the opposite limit: asl→`, all initial coupling
distributions merge into the highly disordered model d
cussed in@15–17#. In this limit the coupling distribution is
infinitely ‘‘stretched’’ nonlinearly, so that every couplin
magnitude occurs on its own scale. A full analysis of t
ground state structure of this model, and the transition
ground state pair multiplicity, is given in@15,17#. A quantum
version of the highly disordered limit has been used to stu
the random quantum Ising model in a transverse field@22#.

So given a wide range of choices for the distribution
theK ’s, the spin glass model described here has a reason
coupling distribution for anyb,`; we will in fact work
with coupling distributions that have a large-magnitude c
off at finite values~depending onb), which guarantees this
As b increases, the distribution becomes increasin
stretched, but retains its finite large-magnitude cutoff for a
b,`, so that any of these models retains the qualitat
thermodynamic behavior of the ordinary EA model.

As we will see, the dependence ofl on b can be chosen
~with l increasing sufficiently slowly! so that if an ordinary
EA model, corresponding to some finitel @e.g.,l(b0)51#,
is in a low-temperature spin glass phase, then so is the m
described above with runningl. We will further see that ifl
increases slowly enough withb ~depending on the choice o
distribution for K), then the Gibbs measures in the limitb
→` are supported only on spin configurations that a
ground states of the highly disordered model. That is natu
since takingl(b)→` slowly enough is roughly equivalen
to first taking theb→` (T→0) limit and then thel→`
limit.

Two examples

In this section we give two examples of coupling realiz
tions that can be used in subsequent analyses. As alr
noted, the precise form of the distribution is unimportant
1-2
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REALISTIC SPIN GLASSES BELOW EIGHT . . . PHYSICAL REVIEW E 63 016101
long as the requirements listed earlier are met; all such m
els should exhibit the same positive-temperature beha
and will merge at zero temperature. The first example st
with a flat distribution forJxy in the interval @21,1# at
l(b0)51. We need to determine the distribution forK nec-
essary to recover this flat distribution forJ. Let

U l5e2lK ~4!

with U 15e2K having a flat distribution in@0,1#.
It follows thatK is taken from an exponential distributio

on (0,̀ ), with P(K)dK5e2KdK. Now let Jxy
l 5exyclU xy

l ;
thenM5uJxy

l u has the distribution

P~M !dM5H l21~M /cl!1/lM 21dM if 0 ,M,cl

0, otherwise .
~5!

It remains to choosecl . The procedure for doing this will be
discussed in Sec. IV B; we here give the result, which iscl

5l, so thatJxy
l 5lexyU xy

l and

P~M !dM5H ~1/l!@M /l#1/lM 21dM if 0 ,M,l

0, otherwise.
~6!

The second example starts with a uniform distribution
K on @0,1#. Again

Jxy
l 5lexye

2lKxy, ~7!

where we have already chosencl5l, but the distribution of
M5uJxy

l u is now given by

P~M !dM5H ~1/l!M 21dM if le2l,M,l,

0, otherwise.
~8!

The coupling distribution for this case is graphed in Fig.
It is important to note that asl→`, the distributions of

Jxy
l in the two examples approach each other; this is true

general. Both of these distributions have a temperatu
dependent cutoff at large coupling magnitudes. While dis

FIG. 1. Sketch of the coupling densityP(Jxy)dJxy from Eq. ~8!
for fixed l,`, corresponding to a uniform distribution ofKxy on
@0,1#.
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butions with cutoffs are chosen for convenience, one co
also choose a Gaussian distribution forJxy at l(b0)51. Be-
cause all of these distributions are expected to give the s
thermodynamic behavior, however, we will henceforth u
the simplest of these, given by Eqs.~7! and ~8!.

III. PURE STATE STRUCTURE WITHIN THE
METASTATE

We will study this class of models and will show that~for
slow enough increase ofl with b), as b→`, the Gibbs
measures~restricted toarbitrary fixed volumesLL) become
supported on the ground states of the highly disordered
glass. We require thatcl be chosen so that the model will b
sensible in the zero-temperature limit, in that the energy d
sity converges to a finite nonzero value, and further that
choice of l(b) be made in such a way that, for eachb
.b0, the model always remains within the low temperatu
broken-spin-flip-symmetric spin glass phase~assuming the
corresponding ordinary EA model atb0 is in such a phase!.

If these requirements can be met, then the most nat
conclusion is that in any dimensiond, the number of ground
states of the highly disordered model provides an up
bound to the number of pure states observed at low~but
nonzero! temperature in the ordinary EA spin glass.~We
emphasize again, though, that other conclusions remain
sible, though perhaps less plausible; these will be discus
in Sec. VI.!

As we have emphasized in earlier papers, if there
multiple pure states, the interesting, and physically releva
situation is the occurrence of incongruent states. Regio
congruence is of mathematical interest, but to see it wo
require a choice of boundary conditions~BC’s! carefully
conditioned on the coupling realizationJ. It is not currently
known how to choose such BC’s in spin glasses. Numer
treatments that look for multiple pure states implicitly sear
for incongruent ones.~It is interesting to note that recen
numerical studies@24–26#, some employing coupling-
dependentbulk terms in the Hamiltonian, have suggested t
possibility of observation of regionally congruent states; b
see also@27# for a different interpretation of the numerica
data. However, recent work indicates that the energetic
the interfaces found in these studies are inconsistent w
regionally congruent pure or ground states@28#.!

We expect our analysis to hold for the number of~incon-
gruent! pure states within any of the coupling-independe
boundary conditionmetastates. The concept of the metastat
was introduced and discussed in Refs.@2# and @13#, and
shown to be equivalent to an earlier~but somewhat different!
construct in Ref.@23#.

A metastate is a measure on~infinite-volume! Gibbs states
at fixed temperature that is constructed via an infinite
quence of volumesLL , with specified boundary condition
on each]LL chosen in a coupling-independent mann
Roughly speaking, the metastate provides the probability~for
varying largeL) of various Gibbs states appearing with
LL . The equivalence of metastates constructed with cer
different coupling-independent boundary conditions w
shown in Ref.@3#.
1-3
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C. M. NEWMAN AND D. L. STEIN PHYSICAL REVIEW E63 016101
If there are infinitely many~incongruent! pure states, a
metastate should be dispersed over them, giving their rela
likelihood of appearance in typical large volumes. If there
no incongruence, the metastate should be unique and
ported on a single pure state pair, and that pair will appea
most~i.e., a fraction one! of the LL’s. Regionally congruent
states, if present, would be ‘‘invisible’’ in the metastate, i.
would appear in a vanishing fraction of all theLL’s. Hence,
even if regional congruence existed, there would still be t
special or ‘‘preferred’’ pure states that would be seen in
typical LL with L large.

An example of regional congruence is afforded by int
face states in ferromagnets, which can only be seen w
carefully chosen boundary conditions, such as those of
brushin @29#. These are BC’s in which the boundary spi
above the ‘‘equator’’~a plane or hyperplane parallel to tw
opposing faces ofLL and cutting it essentially in half by
passing at a finite height above or below the origin! are cho-
sen to be plus and the boundary spins below the equato
minus. Here the special pair of states consists of the
formly magnetized up and down states, which are see
large volumes with random boundary conditions as well,
course, as with periodic or free BC’s.~They would also be
seen even with antiperiodic BC’s, since the interface wo
pass through any fixed finite region only in a vanishing fra
tion of volumes.! An important difference with the spin glas
case is that in the latter there is no known procedure
obtaining boundary conditions that would ‘‘see’’ any ana
gous regionally congruent states.

In the current context, one needs to specify which Gib
measures are being examined atT.0. The procedure in
which one chooses coupling-independent boundary co
tions and then varies the temperature is well defined w
one is studying properties of the metastate as a whole
noted, this will provide information on the number of inco
gruent pure states~in the metastate! at a given temperature. I
one wants to push further in order to study the possible
istence of regionally congruent pure states, then one nee
pick out these Gibbs states through a choice of coupli
dependentboundary conditions. In order to take theb→`
limit, one would then have to change these couplin
dependent boundary conditions in some unknown way
this case, the procedure of taking the zero-temperature l
is a priori not well defined in general. For spin glasses,
only well-defined procedures known at this time u
coupling-independent BC’s, asT→0.

The consequence is that this argument is best able to
vide information on the number of incongruent states in
spin glass metastate at various positive temperatures, bu
it is harder to draw conclusions on the possible existenc
nonexistence of regionally congruent states. These latter
the interface states that are ‘‘invisible’’ in coupling indepe
dent metastates, and in any case, as we have argued in e
papers@2,3,18#, are unlikely to be physically relevant even
they exist, since boundary conditions used in~either numeri-
cal simulations or! laboratory experiments on spin glass
are coupling-independent — i.e., they are not tailored to
microscopic disorder configuration.~For other results and
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discussion concerning the distinction between coupli
dependent and independent boundary conditions,
@30,31#.!

IV. ANALYSIS

We now analyze the behavior of our class of models b
at large finitel ~i.e., at low temperature! and in thel→`
limit. As noted above, for specificity we will study the be
havior of the model with coupling distribution given by Eq
~7! and ~8!.

Our argument relies on answering three questions~in the
affirmative!. For a given model~i.e., specified coupling dis-
tribution! can one choose acl and al(b) ~independently of
particular coupling realization! so that~1! the model has a
thermodynamically sensible scaling limit asb→`, in that
the energy per spin converges to someC as b→`, with 0
,C,`; ~2! l(b) scales in such a way to ensure that, if t
model is in its low temperature thermodynamic phase or
nally, i.e., atl(b0)51, the model at rescaled~lower! tem-
perature remains in that same phase;~3! l(b) increases
slowly enough withb to ensure that any Gibbs state at po
tive temperature is increasingly supported, as temperatu
lowered, on spin configurations that are ground states of
highly disordered model?

In Secs. IV A–IV C, we provide an analysis that answe
these questions in the affirmative, and shows how such acl

andl(b) can be chosen.

A. Effective temperature and couplings

In this section we present a simple transformation on
~inverse! temperature and the couplings that enables us
map the class of models under study onto more fami
ones. In the absence of a scaling factorcl , the Gibbs
weighting factor at inverse temperatureb8 is

expF2b8(̂
xy&

exye
2lKxysxsyG . ~9!

We transform the temperature and couplings using

b8exye
2l(b)Kxy5bJxy

l(b) , ~10!

whereb85bcl(b) and

Jxy
l(b)5exycl(b)e

2l(b)Kxy, ~11!

so at a givenb8 the model maps onto an equivalent one
effective temperatureb and with effective couplingsJxy

l(b) .
Although simple, this rewriting of the Gibbs factor provide
a natural separation of the various factors that allows us
choose the prefactorcl in a coupling-independent way, s
that the energy density has a sensibleb→` limit.

To achieve the correct scaling limit, we need to choo
cl(b) so that it scales~with b or b8) as the inverse of~mi-
nus! the energy densitye(b8,l) of the model with Gibbs
factor ~9!. This energy densitye(b8,l) is the same for all
~infinite-volume! Gibbs states and for almost all realizatio
of the couplings~under the assumption thatuJxy

l u,`) and so
equals its disorder averagee(b8,l). Sinceb8 ~andb) will
1-4
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be chosen to scale to infinity rapidly as functions ofl, we
will choosecl to scale like the inverse of~minus! e(`,l),
the ground state energy density, which in turn scales
~minus! uJxy

l u asl→`. To justify this choice ofcl , we need
to computee(b8,l) in the low-temperature limit. This is
done in the next section.

B. Thermodynamic behavior of the zero temperature limit

In this section we estimate the disorder-averaged ene
per spine(b8,l). Although b8 andl will later be taken to
depend on each other, for the purposes of this section
treat them as independent variables. One of the purpose
this calculation is to provide information on how slowlyl
th
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needs to vary withb8 ~and hence withb) in order to have
sensible thermodynamics in the zero temperature limit.
Sec. IV D we will study howl needs to vary withb in order
for pure states at positive temperature to be supported
ground states of the highly disordered model. We will s
that if l grows slowly withb8 andb, these two calculations
result in mutually compatible ranges for allowed scaling b
haviors.

We now proceed to show that the energy per spin, at la
b, can be computed as a disorder average over a single~ar-
bitrary! coupling J0

l5e2lK0, which as before denotes th
coupling~in J) connecting the spin at the origin with one o
its nearest neighbors. LetPb8,l denote the probability
~within a Gibbs measure at fixedb8). Then, in dimensiond,
2e~b8,l!5d~Pb8,l~J0
l is satisfied!2Pb8,l~J0

l is unsatisfied!!uJ0
lu. ~12!
c-

os-

n

d
axi-
pin
se
At large l ~and largerb8), the main contribution to the
energy density arises from couplings corresponding to
smallestKxy’s, and their probability of being satisfied ap
proaches one. Moreover,

052e~0,l!<2e~b8,l!<2e~`,l!,duJ0
lu, ~13!

where the last inequality is because not every coupling
satisfied at zero temperature. So it will be sufficient for o
purposes to derive a lower bound on2e(b8,l) that ap-
proachesduJ0

lu as b→`. In arriving at a lower bound, the
following general inequality will be useful:

Pb8,l~J0
l is satisfied!2Pb8,l~J0

l is unsatisfied!

5122Pb8,l~J0
l is unsatisfied!

>122
Pb8,l~J0

l is unsatisfied!

Pb8,l~J0
l is satisfied!

. ~14!

We use the coupling magnitude distribution Eq.~8!,
which arises from the flat distribution forK on the unit in-
terval @0,1#. Because most of the contribution to the ener
density comes from couplings corresponding to smallKxy’s,
we break up the calculation into three cases according to
realization ofK0 and its 2(2d21) adjacent couplings.

Case I:K0>d, whered is fixed and 0,d!1.
Case II:K0,d, and one or more adjacent couplings ha

magnitudes corresponding toK<b0d, whereb0 is a constant
with 1/d.b0.1.

Case III:K0,d, and all adjacent couplings have magn
tudes corresponding toK.b0d.

If we denote byeI the contribution to~minus 1/d times!
the energy density from coupling realizations correspond
to Case I, and similarly for the other cases, then trivially

2~1/d!e~b8,l!5eI1eII 1eIII . ~15!
e

is
r

y

he

g

We now study the three cases separately, denoting byII ,
III , andIIII the indicator functions that equal 1~otherwise
0! only for those coupling realizations satisfying, respe
tively, the requirements of the three different cases.

Case I: Here we have

eI<II uJ0
lu5E

d

1

e2lKdK5O„~1/l!e2ld
… ~16!

asl→`.
Case II: The calculation here is similar; we have

eII <III uJ0
lu<2~2d21!b0dE

0

d
e2lKdK

5O~d!E
0

d
e2lKdK ~17!

asl→`.
Case III: This case is more involved. There are four p

sible configurations for the two spins coupled throughJ0
l ;

two of these correspond toJ0
l satisfied and two toJ0

l

unsatisfied. Consider the ratioPb8,l(J0
l is unsatisfied)/

Pb8,l(J0
l is satisfied) that appears in Eq.~14!. This ratio is

maximized by the following ‘‘worst case’’ scenario: i
changing a satisfied configuration~for J0

l) to an unsatisfied
one, all of the 2d21 adjacent couplings touching the flippe
spin change from unsatisfied to satisfied. This case m
mizes the cost in the Gibbs factor for the change in s
configurations. It follows that under the requirements of ca
III,

Pb8,l~J0
l is unsatisfied!

Pb8,l~J0
l is satisfied!

<exp@22b8e2ld1(2d21)2b8e2b0ld
#. ~18!
1-5
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Therefore

eIII 5IIII uJ0
lu@122Pb8,l~J0

l is unsatisfied!#

5@12O~d!#~12O@e22b8e2ld1(2d21)2b8e2b0ld
# !

3E
0

d
e2lKdK ~19!

asl→`.
The behavior of the factore22b8e2ld1(2d21)2b8e2b0ld

that
appears in Eq.~19! asb8→` andl→` is sensitive to the
dependence of these two parameters on each other. We

e22b8e2ld1(2d21)2b8e2b0ld
5e22b8e2ld[12(2d21)e2(b021)ld]

;e22b8e2ld
as l→` ~20!

regardless of the detailed behavior ofl(b). Furthermore,
b8e2ld→` for any d, if l→` slower than log(b8) @i.e., if
l/ log(b8)→0#. We will therefore require~for this particular
coupling distribution, but the calculation is similar for oth
ers! that

l5o@ log~b!# as b→`, ~21!

which, as we shall see, will also guarantee thatl
5o@ log(b8)#.

Returning to the comparison of the energy densities~as
b8→`) for the three cases, we see thateI is reduced from
eIII by a factor of ordere2ld, andeII is reduced fromeIII by
a factor of orderd. We therefore find that

2e~b8,l!5d@16O~d!#E
0

1

e2lKdK, ~22!

so that in the joint limitb8→`, l→` „and with the condi-
tion l5o@ log(b8)# satisfied forK uniformly distributed on
@0,1#…, sinced can be chosen arbitrarily small, it follows tha

2e~b8,l!/~duJ0
lu!→1 as b8→`. ~23!

Therefore, ifKP@0,1# uniformly, we have

2e~b8,l!;uJ0
lu5e2lK05E

0

1

e2lKdK;1/l as l→`,

~24!

and we setcl5l for this distribution, as in Eq.~7!. Thus
b85bcl5bl and Eq. ~21! will indeed guaranteel
5o@ log(b8)#. A similar calculation for the distribution of Eq
~5!, discussed in Sec. II A, results incl;l11, and so we
may choosecl5l. More generally, one choosescl;1/uJ0

lu,
as discussed in Sec. II, to obtain a finite, nonzero ene
density as temperature goes to zero.

C. Comparison to phase behavior of ordinary EA models

We have shown that the first of our requirements, that
thermodynamics of our class of models behave properly
the zero temperature limit, can be met, and have shown
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e
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to compute the energy density at low temperatures. We
now to our second requirement, namely that the model
main in the low-temperature spin glass phase asT is lowered
from a starting temperature already within the spin gla
phase for thel(b0) model. Of course, the low-temperatu
behavior of the ordinary EA spin glass in dimensions th
and higher is not well understood, and it could conceiva
be the case that in some or all dimensions between three
eight it undergoes a succession of phase transitions~either at
discrete temperatures or continuously!, or it has no phase
transition at positive temperature at all~i.e., remains para-
magnetic down to zero temperature!, or it has other, perhap
more exotic, behavior. Our only goal here is to show that
class of models behaves similarly to the ordinary EA s
glass at least for very low, nonzero temperatures. To k
matters simple, we’ll assume that for some range ofd, the
ordinary EA spin glass undergoes a phase transition at s
Tc(d).0, such that below that temperature there is a s
glass phase with broken spin flip symmetry, and with t
number~and organization! of pure states not depending onT,
for 0,T,Tc(d).

That our class of models should behave similarly~at b
,`) to ordinary EA models, in terms of numbers and org
nization of pure states asb changes, is not immediately ob
vious because the couplings in our models are tempera
dependent. It does seem reasonable to expect, though, th
long as the couplings depend weakly onb, our models
should behave similarly to more conventional ones. Ho
ever, we can improve on this expectation and show tha
fact this follows from a natural universality hypothesis.

The universality we have in mind is that the above a
sumption about ordinary EA spin glasses is valid separa
for each fixed finitel. Thus there will be a critical inverse
temperaturebc(l),` for the Hamiltonian Eq.~1! with cou-
plings Jxy5exycle2lKxy. In order to satisfy our second re
quirement,l has to grow slowly enough withb ~or equiva-
lently, b has to grow rapidly enough withl) so that forb
>b0,

b~l!.bc~l!. ~25!

So, for example, ifl(b0)51 and the corresponding spi
glass model is in its lowT spin glass phase, the inequali
~25! will guarantee that the sequence of models with runn
l.1 remain within their corresponding lowT spin glass
phase. The above inequality can always be satisfied con
tently with the other conditions~1! and~3!; all that needs to
be done is to choosel to grow sufficiently slowly withb.
The remaining question will be whether the constraints i
posed by conditions~1! and ~3! are compatible; we reserv
that for the following section.

D. Ground state behavior of the zero temperature limit

We now turn to a central question in the analysis of o
models, which is how slowlyl must vary withb in order
that condition~3! above is satisfied, i.e., whether the Gib
states of our models at positive temperature are increasi
supported, as temperature is lowered, on spin configurat
1-6
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that are ground states of the highly disordered model,
whether this constraint is compatible with condition~1!.

Consider again a fixed~arbitrary! volumeLL centered at
the origin, withany fixed boundary condition chosen inde
pendently of the coupling realization. LetDE(l) denote the
energy difference between the lowest-energy state inLL at
given l and the first excited state. Then condition~3! is
satisfied if bDE„l(b)…→` as b→`, because the lowest
energy state goes to the ground state of the highly disord
model ~for that BC, in that volume! asl→`.

We again study this question in the context of a particu
model, namely whereK is chosen uniformly from the inter
val @0,1#. We have here thatJxy

l ;lexye
2lKxy. As l gets

large for fixedL, the first excited state corresponds to t
~multi-! spin flip that changes only the smallest magnitu
coupling in the~wired BC! invasion tree~see Refs.@15,17#!
from satisfied to unsatisfied. But for the distribution chos
the magnitude of this coupling is larger thanl exp@2l#, so
that at anyl, DE(l).le2l. Therefore,

bDE~l!>ble2l, ~26!

so if l grows as log(b) or slower, condition~3! is satisfied
~for this particular distribution ofK).

Condition~1! requires a slightly stronger constraint, give
by Eq.~21!, which is certainly compatible with the constrai
given above. It is gratifying that both conditions requirel to
grow slowly with b, as initially anticipated. It might be tha
condition ~2! would requirel to grow even more slowly
with b, but in any event poses no conflicts with the oth
constraints.

The procedure given here can be adapted for other di
butions, but it is already sufficient that an explicit examp
can be constructed of a model with all of the desired pr
erties listed earlier.

V. DISORDERED FERROMAGNETS

The basic argument of this paper is that for the mod
with temperature-dependent couplings as in Eq.~2! @and with
properly chosencl and l(b)#, the absence of more than
single pair of ground states atb5` for d,8 is evidence for
no more than two pure states in ordinary EA spin glass m
els with fixed couplings at very low temperatures.

A potential flaw in this line of reasoning seems to arise
the case of disordered ferromagnets, corresponding to
elimination of the random signsexy in Eq. ~2!. After all,
highly disordered ferromagnets also have only a single
of ground states ford,8 @15,17#, but ordinary disordered
ferromagnets are expected to have multiple pure states
d>4 @32#—namely, the interface states@33,34# obtained by
using Dobrushin boundary conditions. Further, this expe
tion is strongly supported by the rigorous results of Bov
and Külske concerning the existence ford>4 of such inter-
face states in solid-on-solid~SOS! models@35#. Indeed, the
existence of such interface states in ferromagnets motiv
Bovier and Fro¨hlich to argue that there are more spin gla
pure states ind>4 thand53 ~see Sec. 6.4 of@36#!. So we
need to ask why our arguments, when applied to disorde
01610
d

ed

r

e

,

r

ri-

-

ls

-

he

ir

or

-
r

ed
s

ed

ferromagnets, do not lead to a contradiction for 4<d,8.
In fact, they do not, for at least two reasons. One of the

already discussed above, is the lack of an appearance o
terface states in the metastate~with coupling independen
boundary conditions!. We have not argued, even for sp
glasses, that there are absolutely no more than two p
states ford,8, but only that not more than two appear in th
metastate~and that these are the physically relevant one!.
For both ordinary EA spin glasses ind,8 and ordinary dis-
ordered ferromagnets in alld, the metastate with free or pe
riodic ~or random! BC’s should exhibit no more than a sing
pair of pure states. Indeed, in the highly disordered fer
magnet even ford.8, the free or periodic~but not random!
BC metastate is supported only on the single pair of hom
geneously magnetized ground states@15,17#.

But one might object that in the ferromagnet setting, u
like the spin glass case, one does know how to choose B
namely of the Dobrushin type, so that one can obtain Gi
states with interfaces in the thermodynamic limit and m
astates supported on them. For example, by taking a m
BC with the Dobrushin ‘‘equator’’ between the plus and m
nus parts of the boundary occuring at a variety of heig
with various weights, one could obtain a metastate suppo
on many different pure interface states. So, wouldn’t the f
that for 4<d,8 the zero temperature limit of the metasta
could not be supported on more than two ground states
contradict our reasoning that the number of ground state
the metastate at zero temperature is an upper bound fo
number of pure states at very low temperature?

Here is where the second reason for a distinction betw
ferromagnets and spin glasses comes into play. It conc
the universality hypothesis of our argument that for any fix
l,` the low temperature phase structure of a spin gl
should be qualitatively the same, regardless of the value
l. For spin glasses, this seems a perfectly plausible work
hypothesis; indeed, if this were not so, then, e.g., a Gaus
distribution could have a different lowT thermodynamic
structure, in terms of pure state multiplicity, from a unifor
distribution on@2J,J#, or a 6J spin glass. But this is no
likely; it is expected that only nonuniversal features such
Tc(d) depend on the coupling distribution~assuming that it
is symmetric about zero and without slowly decaying tail!.

But this is not so for disordered ferromagnets, where th
are no energy cancellations along an interface—unlike
spin glasses. This may well lead to a greater sensitivity
interface stability to the strength of the disorder. It see
quite plausible, as suggested to us by Bovier and Ku¨lske, that
for some dimensionsd>4, the usual interface states ob
tained through normal Dobrushin BC’s could perhaps dis
pear forl above some critical valuelc,`, even for arbi-
trarily low temperature. That is, forl,lc , the interface
would be flat for bothT50 and smallT.0, but for l
.lc , the interface would be rough forany T.0 ~and per-
haps also forT50).

Our analysis suggests that this is indeed so ford,8, so
that there would be only two pure states~even for the mixed
Dobrushin BC metastate described above! for ordinary dis-
ordered ferromagnets at very low temperatures,providing
1-7
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the disorder is sufficiently (but not infinitely) strong. For 4
<d,8, this could be a consequence of the strong disor
either completely destabilizing the interface states so
they are entirely absent, or else of partially destabiliz
them so that finding them would require Dobrushin ty
BC’s, but with acoupling-dependentequator~at a noncon-
stant height!.

VI. DISCUSSION

In this paper we have constructed a class of near
neighbor spin glass models with~unusual! coupling distribu-
tions depending on a disorder strength parameterl that itself
is temperature dependent. These models are designed to
the property that their thermodynamic equilibrium propert
at low temperatureT should be the same as for models w
more familiar distributions~e.g.,6J or Gaussian!, but they
have the rare advantage that their ground state structu
known. The basic assumption of this paper is that a near
neighbor Ising spin glass model with any ‘‘reasonable’’ co
pling distribution—i.e., symmetric about zero, and wi
small or zero weight on very large coupling magnitudes
will display qualitatively equivalent thermodynamics at fixe
d ~e.g., the presence or absence of a phase transition
number and organization of pure states in the spin g
phase, etc.!—at least for very low temperature. While th
remains an assumption, it is a common one in theoret
spin glass studies—so, for example, the thermodynamic
two extreme cases, the6J and Gaussian distributions, ar
usually assumed to be the same@37#.

All of the models discussed here have the desired pro
ties at finitel ~i.e., whenT.0). At infinite l (T50) they
do not, and we make no claims as to whether anyground
stateproperties of ordinary spin glasses can be inferred fr
these highly disordered models. But the interesting aspec
the analysis is that, while the thermodynamic properties
nonzero temperature cannot be directly solved for,
ground state properties of our models can, and the analys
Sec. IV enables us to infer properties of realistic spin gl
models at low but nonzero temperatures.

In general, the number of pure states for a given sys
remains the same or increases~at a phase transition point! as
temperature decreases. Of course, this general tenden
violated at a first-order phase transition, due to phase co
istence. One well-known example of such a violation is
q-state Potts ferromagnet withq sufficiently large~depending
on d), which atTc has its paramagnetic pure phase coex
ing with its q ordered pure phases, while belowTc the para-
magnetic phase is unstable~for rigorous proofs, see@38–
40#!. However, it remains the case, for these and ot
systems with first-order transitions, that the number of p
phases above the transition is no larger than the numbe
low. More interesting re-entrant behavior occurs in oth
systems—see, e.g., Ref.@41#. ~A different type of reentrant
behavior occurs in some spin glasses in the temperat
concentration phase diagram@5#, but this does not appear t
violate the general rule of number of pure states not decr
ing as temperature decreases.!
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However, we are unaware of any natural examples wh
the number of ground states issmaller than the number of
pure states at arbitrarily low temperature@42#. For the spin
glass, we are looking at an even weaker claim—namely,
the number of pure states in themetastatedoes not decreas
as temperature is lowered. That is, it is sufficient to consi
only incongruent pure states, as discussed in Sec. III.

These considerations enable us to draw a set of interes
conclusions from our analysis of these models. The m
natural, and obvious, one is that thenumber of ground states
in the zero-temperature highly disordered metastate (e
with free or periodic boundary conditions) provides an u
per bound to the number of pure states at very low tempe
ture seen in realistic spin glass models.This ground state
structure is known: theT50 metastate of the highly disor
dered model is supported on a single pair of ground sta
below eight dimensions, and~uncountably! infinitely many
above eight@15,17#. Our analysis therefore provides ev
dence in favor of the existence of no more than a single p
of pure states at low temperatures in realistic spin glass m
els below eight dimensions@43#. ~This conclusion is consis
tent, of course, with there being only a single pure sta
either paramagnetic or otherwise, at all nonzero temperat
in some or all of these dimensions.! Our analysis does no
allow us to draw conclusions about what happens ab
eight dimensions.

There are two other logical possibilities, either of whic
would also be quite interesting. It could be that our gene
intuition about the behavior of the metastate as a function
temperature is violated here, so that the number of gro
states issmaller than the number of pure states in some
mensions. In other words, in these models there might b
jump in the number of thermodynamic states, from larger
smaller, in the metastate at zero temperature. We cannot
out this possibility, other than to note that the discovery o
class of models in which this occurs raises the interes
possibility that it might occur elsewhere also.

Indeed, a jump presumably does occur in the ordin
two-dimensional~2D! EA Ising spin glass—but it goes in th
other, more natural, direction, i.e., from smaller to larger
the temperature is lowered to zero. The 2D spin glass
believed to be paramagnetic at all nonzero temperatures,
has at least a pair of ground states at zero temperature.
conclusion is that, while we cannot logically exclude t
possibility of a lowering of the number of thermodynam
states as temperature goes to zero, it appears to be less
than the number remaining the same or increasing.

We mention in passing a third possibility—that the num
ber of pure states in a typical spin glass metastate does
behave in a continuous or even monotonic fashion at al
temperature is lowered@21#. This possibility presents a pic
ture of the low-temperature spin glass phase far differ
from any that have appeared so far in the literature. An
treme version of this possibility~bearing some similarity to
eigenvalue dependence on disorder realizations in low
mensional localization!, which we present primarily for illus-
trative purposes, is as follows. At any~low! temperature not
depending on the coupling realizationJ, there would be no
broken symmetry~and a unique infinite volume Gibbs stat!
1-8
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for almost everyJ, but nevertheless, if a typicalJ were
picked first and then the temperatureT were varied, there
would be a~countably infinite! dense set of temperature
depending onJ, with broken symmetry pure phases f
that J at those temperatures. However, because there i
evidence of such a picture to date, we do not pursue it fur
here.
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@38# R. Kotecký and S. B. Shlosman, Commun. Math. Phys.83,
493 ~1982!.

@39# D. H. Martirosian, Commun. Math. Phys.105, 281 ~1986!.
@40# L. Laanait, A. Messager, and J. Ruiz, Commun. Math. Ph

105, 527 ~1986!.
@41# R. H. Schonmann and N. I. Tanaka, Ann. Appl. Prob.8, 234

~1998!.
@42# There is though a handcrafted example of a lattice field the

with a single ground state but a sequence of temperatures t
ing to zero with coexisting phases; see E. A. Pecherski
S. B. Shlosman, Theor. Math. Phys.70, 325 ~1987!.

@43# The possibility that dimension eight plays a special role
short-ranged spin glasses has been suggested previously
for different reasons; see D. S. Fisher and H. Sompolins
Phys. Rev. Lett.54, 1063~1985!. However, we emphasize tha
our claim is not that dimension eight necessarily plays a s
cial role—only that the most likely conclusion of our analys
of a single pair of low-temperature pure states, holds at le
up to eight dimensions.
1-9


