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Realistic spin glasses below eight dimensions: A highly disordered view
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By connecting realistic spin glass models at low temperature to the highly disordered model at zero tem-
perature, we argue that ordinary Edwards-Anderson spin glasses below eight dimensions have at most a single
pair of physically relevant pure states at nonzero low temperature. Less likely scenarios that evade this
conclusion are also discussed.
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I. INTRODUCTION known [15,17. So the behaviors of the two models may
diverge atT=0, i.e., the ground state structure of the highly
Rigorous[1,2] and nonrigoroug3] analyses ruling out disordered models may differ from that of the ordinary EA
mean-field picturegfor an overview, se¢4—6]) of short-  spin glass. But the crucial point is thamy T>0 Gibbs mea-
ranged finite-dimensional spin glass models leave open theure, restricted to any finite volume, of our model becomes
question of whether there is a single pair or infinitely manysupported, as 0, on spin configurations that are ground
pure states at low temperatui@ssuming that spin flip sym-  states of the highly disordered model within that volume
metry is indeed broken The droplet-scaling picturE7—9]  Thijs results in three possible conclusions, any of which is
asserts the existence of at most a single pair in all dimensiongteresting. The most reasonable follows from the natural
[10,11), but the same conclusion might arise independently,, e ctation that the number of ground states is at least as
of the other predictions of droplet-scaling. On the other handgreat as the number of pure states at low temperatures; thus

i igfitnitely m?n)éputrﬁ statﬁs (l)(;:ch(for some dim(jens_i:;]mth the number of ground states in the highly disordered spin
and temperaturd), they shou 0 SO In accord wi € glass should give an upper bound to the number of low-

chaotic pairs pictur§2,12,13, in which only a single pair is temperature pure states in an ordinary EA mod@here

iﬁgg gll?l g;yg;l(:gtilig?li \t:/r:;:]ev\écl)lzl:nrr;es, with the particular palrwould, however, be no implication for the numbergsbund
; (itates in the EA model at=0.) Because the highly disor-

In this paper we present an analysis that suggests no m ) x )
tipair pictures should occur below eight dimensions. Thed€red spin glass has only a single pair of ground states below

analysis is based on relating nonzero temperature Gibb@ght dimensiong15,17,19, the conclusion would be that
states of Edwards-AndersdEA) spin glass modelEl4] to the EA spin glass has no more than a single pair of pure
Zero-temperature ground states of the h|gh|y disorderegtates for alld<8 at very low temperature. This conclusion
model [15,16. The number of ground state pairs in the would extend tod=8 if it were shown that the highly dis-
highly disordered model is known to be one 8 and ordered model has only a single pair of ground states also in
(uncountably infinite for d>8 [15,17]. The relation is such that dimension.
that the number of ground states in the highly disordered We will discuss below why the analysis and this conclu-
model should serve as an upper bound for the number dfion should apply only tincongruenf20] pure states. Two
(physically relevantpure states of ordinary EA spin glasses distinct pure states that are not global flips of each other may
at low butnonzeratemperature. We make no claim about thebe either incongruent or regionally congruent. Spin configu-
number of ground states of the ordinary modelgeabtem-  rations chosen from incongruent pure states have a nonvan-
perature(except by other arguments fdr=2 [18]). ishing density of relative domain walls, i.e., couplings satis-
The idea behind the analysis is as follows. We construct §ied in one but not the other spin configuration; otherwise
one-parameter family of EA models, parametrized\§y), they are regionally congruent. If incongruence occurs, it
wherep is the inverse temperature, such that- (slowly)  should be generated using different sequences of coupling-
asB—o in a way to be specified shortly. The construction isindependent boundary conditions, but to see regional congru-
such that for any finitgg= B, the model is expected to have ence should require choices of boundary conditions that are
the same thermodynamic behavior as the “ordinary” EA coupling dependent.
nearest-neighbor Ising spin glass in the same dimension cor- Two other possibilities, less straightforward but also in-
responding to\(By), in the sense that if the ordinary EA triguing, could conceivably occur. One of course is that the
model is in a low-temperature broken-symmetry spin glassupposition that the number Ghcongruent ground states at
phase aiB,, our model should be also, and the number andlT=0 is no smaller than the number @hcongruenk pure
organization of pure states in the two models should be idenstates at lowT>0 does not hold for this class of models.
tical. At T=0 (i.e., B==), our model becomes the highly Another is that there may be no continuity or even monoto-
disordered spin glagd5,16], whose ground state structure is nicity at all in the numberof pure states as a function of
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temperature in the spin glass — perhaps the most interestirtgkes on one of the two values1 with equal probability,

but also least likely of the three possibilities raised Herd.  and theK,, can be chosen from any continuous distribution
All three of these conclusions will be discussed in greatee.g., uniformly from[0,1]) so that the distribution of the

detail; we now turn to a discussion of the construction of thel,,'s is reasonable, as discussed above. Two examples will

class of models to be analyzed. be given shortly.
Our general approach is to start with a “typical” EA
II. MODEL model at\(By)=1, and then embed this within a one-

] o parameter family of models that has a known ground state
We will study the Edwards-AndersoftA) Hamiltonian  structure[corresponding ta. () ==]. Let us denote by, a

[14] on Z¢, the cubic lattice ird dimensions, given random coupling at the origin connecting to a specified
nearest-neighbor site. By E¢R), for a given realization of
_ the random variablese and K, we have Jy=¢€g|J
HAo)=— > J , 1 , 0= €olJo
o) (xE,y) xyIxTy @ eoc1e X0 (¢, can be taken equal tg.JAfter a rescaling of

the temperature, we have
where 7 denotes a realization of the couplings, and where

the brackets indicate that the sum is over nearest-neighbor ‘JS:EOC)\lJm:EOC)\e_)\KO- 3)
pairs only, with the siteg,y e Z9. We will take the spinsr,
to be Ising, i.e.ox=*1. We will see that a choice of, ~1/|Jo|*, where an overbar

Equation(l) is the EA Ising Hamiltonian for an infinite-  jenotes an average over coupling realizations, will ensure a
volume spin glass oZ’; we also need to define the EA sensible thermodynamics for the model in the limit of zero
model on a finite volume, given specified boundary Condi“temperature(providing)\ increases slowly ag— ).
tions. LetA| be a cube of sidel2+ 1 centered at the origin, Note that whem =0 the model becomes theJ model
ie, Ay={-L,—L+1,...L}% The finite-volume EA for any starting choice of coupling distribution. Of more rel-
Hamiltonian is then just that of Eq1) confined to the vol-  ayance is the opposite limit: as—c, all initial coupling
ume A, with the spins on the bounda@A of the cube  gistributions merge into the highly disordered model dis-
obeying the specified boundary conditiofthe boundary cyssed iff15-17. In this limit the coupling distribution is
dA of the volumeA consists of all sites not ik, with jnfinitely “stretched” nonlinearly, so that every coupling
one nearest neighbor belongingAg .) magnitude occurs on its own scale. A full analysis of the

The couplingsly, are quenched, independent, identically ground state structure of this model, and the transition in
distributed random variables; throughout the paper we willyround state pair multiplicity, is given ii5,17. A quantum
assume their common distribution to be symmetric aboufersion of the highly disordered limit has been used to study
zero. Most studies use either the Gaussian=dr distribu-  the random quantum Ising model in a transverse fi2R).
tions, under the assumption that the qualitative thermody- So given a wide range of choices for the distribution of
namic properties in fixed dimension — existence of a phasgheK's, the spin glass model described here has a reasonable
transition at som& .(d) (whose value, but presumably not coupling distribution for anyg<oc; we will in fact work
its existence, will depend on the nature of the dlStrlbl.)tlon with Coup”ng distributions that have a |arge_magnitude cut-
the presumed broken spin-flip symmetie., a nonzero EA  off at finite values(depending ong), which guarantees this.
order parameteqg,) below T., the number of pure states As g increases, the distribution becomes increasingly
below T, and so on — will be the same for any “reason- stretched, but retains its finite large-magnitude cutoff for any
able” coupling distribution. Because this remains an as-g<w, so that any of these models retains the qualitative
sumption, there is no precise definition of “reasonable,” bUtthermodynamic behavior of the ordinary EA model.
the expectation is that any distribution that is symmetric  As we will see, the dependence ofon 8 can be chosen
about zero and falls off sufficiently quickly for larger cou- (with X\ increasing sufficiently slowlyso that if an ordinary
pling magnitudes will all e>_<hibit similgr spin glass behavior. gp model, corresponding to some finite[e.g.,\ (B) = 1],
Thus, for example, a uniform distribution supported on s in a low-temperature spin glass phase, then so is the model
[—1,1] is expected to have the same basic thermodynamigescribed above with running We will further see that it
properties as the-J or Gaussian spin glasses. We proceedncreases slowly enough with (depending on the choice of
using this assumptiofor weakened versions of)it distribution forK), then the Gibbs measures in the linit

‘We erart from previous studlgs in parametrizing the cou-_, . gre supported only on spin configurations that are
pling distribution through the variable(B), with A—% as  ground states of the highly disordered model. That is natural
B—=. The couplingsl,, are defined through the relation gjnce takingh (8) —c slowly enough is roughly equivalent
(cf. [15) to first taking thef— (T—0) limit and then thex— o

J)):( 8 limit.

y exCr(pe P, )

wherec, 4 is chosen to ensure that the model has a sensible Two examples

thermodynamic limit(i.e., a finite energy and/or spimvhen In this section we give two examples of coupling realiza-
B—=, ande,, andK,, are two sets of independent, identi- tions that can be used in subsequent analyses. As already
cally distributed(i.i.d.) random variables. Each variabég,  noted, the precise form of the distribution is unimportant as
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FIG. 1. Sketch of the coupling densiB(J,,)dJ,, from Eq.(8)
for fixed A <c0, corresponding to a uniform distribution &f,, on
[0,1].
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butions with cutoffs are chosen for convenience, one could
also choose a Gaussian distribution Joy at A (8,)=1. Be-
cause all of these distributions are expected to give the same
thermodynamic behavior, however, we will henceforth use
the simplest of these, given by Eq¥) and(8).

Ill. PURE STATE STRUCTURE WITHIN THE
METASTATE

We will study this class of models and will show th&ir
slow enough increase of with B), as B—x, the Gibbs
measuresrestricted toarbitrary fixed volumesA ) become
supported on the ground states of the highly disordered spin
glass. We require that, be chosen so that the model will be
sensible in the zero-temperature limit, in that the energy den-
sity converges to a finite nonzero value, and further that the
choice of A\(B8) be made in such a way that, for eagh

long as the requirements listed earlier are met; all such mod> B, the model always remains within the low temperature
els should exhibit the same positive-temperature behavidproken-spin-flip-symmetric spin glass phagssuming the
and will merge at zero temperature. The first example startsorresponding ordinary EA model & is in such a phage

with a flat distribution forJ,, in the interval[—1,1] at
N(Bo)=1. We need to determine the distribution #omec-
essary to recover this flat distribution far Let

u)\:e—)\K (4)

with ¢/1=e~¥ having a flat distribution if0,1].

It follows thatK is taken from an exponential distribution
on (0g), with P(K)dK=e"XdK. Now let J},= &,,C\ U, ;
thenM=|J}| has the distribution
NI (M/c )™M tdM  if 0<M<c,

P(M)dM= { 0, otherwise.

(5

It remains to choose, . The procedure for doing this will be
discussed in Sec. IV B; we here give the result, which,is
=N\, so thatJy =\ e, }, and

(MMM~ 1M if 0<M <A\

P(M)dM= { 0, otherwise.

(6)

If these requirements can be met, then the most natural
conclusion is that in any dimensiah the number of ground
states of the highly disordered model provides an upper
bound to the number of pure states observed at (but
nonzer9 temperature in the ordinary EA spin glagyVe
emphasize again, though, that other conclusions remain pos-
sible, though perhaps less plausible; these will be discussed
in Sec. VI)

As we have emphasized in earlier papers, if there are
multiple pure states, the interesting, and physically relevant,
situation is the occurrence of incongruent states. Regional
congruence is of mathematical interest, but to see it would
require a choice of boundary conditioiBC’s) carefully
conditioned on the coupling realizatign It is not currently
known how to choose such BC's in spin glasses. Numerical
treatments that look for multiple pure states implicitly search
for incongruent ones(lt is interesting to note that recent
numerical studies[24-26, some employing coupling-
dependenbulk terms in the Hamiltonian, have suggested the
possibility of observation of regionally congruent states; but
see alsd27] for a different interpretation of the numerical
data. However, recent work indicates that the energetics of
the interfaces found in these studies are inconsistent with

The second example starts with a uniform distribution forregionally congruent pure or ground staf&s)].)

K on[0,1]. Again

3= Neyye MK, ()
where we have already chosep=\, but the distribution of
M=]J},| is now given by

(UMMM if Ae M <M<A,

P(M)dM= 0, otherwise.

8

The coupling distribution for this case is graphed in Fig. 1.
It is important to note that as—oe, the distributions of

We expect our analysis to hold for the number(ioton-
gruenj pure states within any of the coupling-independent
boundary conditioometastatesThe concept of the metastate
was introduced and discussed in Refg] and [13], and
shown to be equivalent to an earligaut somewhat differeit
construct in Ref[23].

A metastate is a measure @nfinite-volume Gibbs states
at fixed temperature that is constructed via an infinite se-
quence of volumes\, , with specified boundary conditions
on eachdA| chosen in a coupling-independent manner.
Roughly speaking, the metastate provides the probalgibty
varying largeL) of various Gibbs states appearing within

Jﬁy in the two examples approach each other; this is true im\| . The equivalence of metastates constructed with certain
general. Both of these distributions have a temperaturedifferent coupling-independent boundary conditions was
dependent cutoff at large coupling magnitudes. While distrishown in Ref[3].
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If there are infinitely many(incongruenk pure states, a discussion concerning the distinction between coupling-
metastate should be dispersed over them, giving their relativdependent and independent boundary conditions, see
likelihood of appearance in typical large volumes. If there is[30,31].)
no incongruence, the metastate should be unique and sup-
ported on a single pure state pair, and that pair will appear in IV. ANALYSIS

most(i.e_z., a fraction ongof ﬂl_e Ap's. I‘T’,e_gionally congruent We now analyze the behavior of our class of models both
states, if presgnt, woulq pe |nV|S|-bIe in the metastate, I.€., 5t large finitex (i.e., at low temperatujeand in thex — o
W0U|d_ appear in a vanishing fra_lctlon of all thg 's. Hgnce, limit. As noted above, for specificity we will study the be-
even if regional congruence existed, there would still be tWagvior of the model with coupling distribution given by Egs.
special or “preferred” pure states that would be seen in §7) and (8).

typical A| with L large. Our argument relies on answering three questigmshe

An example of regional congruence is afforded by inter-affirmative). For a given modeli.e., specified coupling dis-
face states in ferromagnets, which can only be seen witkribution) can one choose @ and ax(8) (independently of
carefully chosen boundary conditions, such as those of Doparticular coupling realizationso that(1) the model has a
brushin[29]. These are BC’s in which the boundary spinsthermodynamically sensible scaling limit @—«, in that
above the “equator”(a plane or hyperplane parallel to two the energy per spin converges to so@eas S8— o, with 0
opposing faces of\, and cutting it essentially in half by <C<; (2) \(B) scales in such a way to ensure that, if the
passing at a finite height above or below the onigire cho- model is in its low temperature thermodynamic phase origi-
sen to be plus and the boundary spins below the equator arally, i.e., at\(Bo) =1, the model at rescaledower) tem-
minus. Here the special pair of states consists of the uniPerature remains in that same phag®; \(B) increases
formly magnetized up and down states, which are seen ilowly enough with3 to ensure that any Gibbs state at posi-
large volumes with random boundary conditions as well, oftive temperature is increasingly supported, as temperature is
course, as with periodic or free BC'6They would also be Iqwered., on spin configurations that are ground states of the
seen even with antiperiodic BC's, since the interface wouldghly disordered model? _ _
pass through any fixed finite region only in a vanishing frac- In Secs. !VA_,IVC’ we prov_lde an analysis that answers
tion of volumes) An important difference with the spin glass these questions in the affirmative, and shows how such a
case is that in the latter there is no known procedure fofind)‘(ﬁ) can be chosen.
obtaining boundary conditions that would “see” any analo-
gous regionally congruent states.

In the current context, one needs to specify which Gibbs In this section we present a simple transformation on the
measures are being examined Tat 0. The procedure in (inversg temperature and the couplings that enables us to
which one chooses coupling-independent boundary condmap the class of models under study onto more familiar
tions and then varies the temperature is well defined wheanes. In the absence of a scaling factyr, the Gibbs
one is studying properties of the metastate as a whole. Ageighting factor at inverse temperatyseé is
noted, this will provide information on the number of incon-
gruent pure statg$n the met_astapeat a given temperature. If exp{ 8> Exye—xny ayay|. (9)
one wants to push further in order to study the possible ex- )
istence of regionally congruent pure states, then one needs to ] )
pick out these Gibbs states through a choice of coupling¥Ve transform the temperature and couplings using
dependenboundary conditions. In order to take tife—x B e, e NBKy= BJ)\(B) (10)
limit, one would then have to change these coupling- Xy Xy o
dependent boundary conditions in some unknown way; iﬂNhere,B’=,8cMB) and
this case, the procedure of taking the zero-temperature limit
is a priori not well defined in general. For spin glasses, the JQ)(,B)

only well-defined procedures known at this time use . , .
coupling-independent BC's, &0 so at a givenB’ the model maps onto an equivalent one at

The consequence is that this argument is best able to pr&ffective temperatur@ and with effective couplingg}{” :
vide information on the number of incongruent states in the®\lthough simple, this rewriting of the Gibbs factor provides
spin glass metastate at various positive temperatures, but thahatural separation of the various factors that allows us to
it is harder to draw conclusions on the possible existence dfh00se the prefactar in a coupling-independent way, so
nonexistence of regionally congruent states. These latter at8at the energy density has a sensifle -« limit.
the interface states that are “invisible” in coupling indepen- ~ T0 achieve the correct scaling limit, we need to choose
dent metastates, and in any case, as we have argued in earlfers) SO that it scaleswith 3 or ') as the inverse ofmi-
paperd2,3,1§, are unlikely to be physically relevant even if NUS the energy densitg(5’,\) of the model with Gibbs
they exist, since boundary conditions usedeither numeri- ~ factor (9). This energy densitg(B’,)) is the same for all
cal simulations or laboratory experiments on spin g|asses(|nf|n|te-volume) Gibbs states and for almost all realizations
are coupling-independent — i.e., they are not tailored to the@f the couplinggunder the assumption thlaliy|<oo) and so
microscopic disorder configuratiofFor other results and equals its disorder averag€s’,\). SinceB’ (and 3) will

A. Effective temperature and couplings

= exyc)\(ﬁ)ef)\(ﬁ)ny, (11)
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be chosen to scale to infinity rapidly as functions\gfwe  needs to vary with3’ (and hence withg) in order to have
will choosec, to scale like the inverse diminusg e(«,\), sensible thermodynamics in the zero temperature limit. In
the ground state energy density, which in turn scales likeSec. IV D we will study howh needs to vary witfg in order
(minus |J§y| as\— . To justify this choice of, , we need for pure states at positive temperature to be supported on

to computee(’,\) in the low-temperature limit. This is grou_nd states of the hi_ghly disordered model. We will see
done in the next, section ' that if A grows slowly with3’ and 3, these two calculations

result in mutually compatible ranges for allowed scaling be-
haviors.

We now proceed to show that the energy per spin, at large

In this section we estimate the disorder-averaged energg, can be computed as a disorder average over a sf{agle
per spine(B’,\). Although 8’ and\ will later be taken to  bitrary) coupling J3=e‘“<0, which as before denotes the
depend on each other, for the purposes of this section weoupling(in 7) connecting the spin at the origin with one of
treat them as independent variables. One of the purposes 6 nearest neighbors. LePs , denote the probability
this calculation is to provide information on how slowly  (within a Gibbs measure at fixg@l'). Then, in dimensiom,

B. Thermodynamic behavior of the zero temperature limit

—e(B' \)=d(Pg \(Jy is satisfied— Py , (I} is unsatisfieg)|Jp|. (12

At large A (and largerB’), the main contribution to the We now study the three cases separately, denoting py
energy density arises from couplings corresponding to th&,,, andZ,, the indicator functions that equal (btherwise
smallestK,,’s, and their probability of being satisfied ap- 0) only for those coupling realizations satisfying, respec-
proaches one. Moreover, tively, the requirements of the three different cases.

Case I: Here we have

0=—e(0N)<—e(B' ,N)=—e(x,N)<d|J], (13

1
where the last inequality is because not every coupling is e<Z|J|= L e MdK=0((1/\)e ) (16)
satisfied at zero temperature. So it will be sufficient for our
purposes to derive a lower bound ene(B’,\) that ap- 49\ .

proachesd|J3| as S—. In arriving at a lower bound, the  Case II: The calculation here is similar; we have
following general inequality will be useful:

P S
Py (35 is satisfied— Py, (3} is unsatisfiegl en<Z|Jpl=2(2d~ 1)b05j0 e MdK
=1-2P4 ,(J) is unsatisfiey 5
pIATT0 =o<5)f e KdK (17)
P (JD is unsatisfied 0
=12 B0 Z T (14)
Pg \(Jp is satisfied as\—,

. . S Case llI: This case is more involved. There are four pos-
We use the coupling magnitude distribution E@),  sible configurations for the two spins coupled throuy
terval[0,1]. Because most of the contribution to the energy,ngatisfied. Consider the ratid® 5 , (Jg is unsatisfied)/
density comes from couplings corresponding to sriglfs, Pg 1 (JD is satisfied) that appears in E(.4). This ratio is
we break up the calculation into three cases according to thl%gkimi;ed by the following “worst case” scenario: in
realization ofK, and its 2(2i~1) adjacent couplings. changing a satisfied configuratigfor J3) to an unsatisfied

Case [:Ko= 5, whered'is fixed and 0= 6<1. one, all of the 21— 1 adjacent couplings touching the flipped
Case Il:Ky< 8, and one or more adjacent couplings have_ . jacer pings ! 9 pped
spin change from unsatisfied to satisfied. This case maxi-

magnitudes corresponding ko<Dbo4, whereby is a constant mizes the cost in the Gibbs factor for the change in spin

with 1/6>by>1. . . .
Case III:Ko< 8, and all adjacent couplings have magni- ::I(I)nﬂguranons. It follows that under the requirements of case

tudes corresponding t§>b 6.

If we denote bye, the contribution tolminus 14 times
the energy density from coupling realizations corresponding
to Case |, and similarly for the other cases, then trivially pﬁ,’x(\]g is satisfiedl

Pg (35 is unsatisfieg

6.

—(1d)e(B' N)=e +te,+ey . (15) <exy —2p'e Mor@d-n2p’e M (1g)
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Therefore

e =2 |I5|[1—2P4 (35 is unsatisfie]
=[1-0( 5)](1_O[efzﬁ’e’}“ﬂ(2d71)2ﬁ’e’b0)‘5])

)
X f e MdK (19
0

as\—oo,

The behavior of the factae 28" "+ (2d-1)28'e"%0" ya¢
appears in Eq(19) as 8’ —= and\— is sensitive to the

PHYSICAL REVIEW E63 016101

to compute the energy density at low temperatures. We turn
now to our second requirement, namely that the model re-
main in the low-temperature spin glass phas@ aslowered
from a starting temperature already within the spin glass
phase for thex(B,) model. Of course, the low-temperature
behavior of the ordinary EA spin glass in dimensions three
and higher is not well understood, and it could conceivably
be the case that in some or all dimensions between three and
eight it undergoes a succession of phase transitieitiser at
discrete temperatures or continuoyslgr it has no phase
transition at positive temperature at @lle., remains para-
magnetic down to zero temperatyrer it has other, perhaps

dependence of these two parameters on each other. We hay@yre exotic, behavior. Our only goal here is to show that our

e—28'e M+ (2d-1)28'e PN _ -2’ M1 (2d-1)e” (Po~ DA

~e28'e g5\ (20)
regardless of the detailed behavior »fg). Furthermore,
B'e Mo for any 8, if \—o slower than logg') [i.e., if
NMlog(B')—0]. We will therefore requirdfor this particular
coupling distribution, but the calculation is similar for oth-
ers that

A=o[log(B)] as B—x, (21

which, as we shall
= o[ log(8')].

Returning to the comparison of the energy densites
B'— ) for the three cases, we see tleatis reduced from
ey, by a factor of ordee™*?, ande,, is reduced frone,,; by
a factor of orders. We therefore find that

see, will also guarantee that

—e(,B’,)\)=d[1i0(5)]fole’”KdK, (22

so that in the joint limit3’ — o, A —c0 (and with the condi-

tion A =o[log(B")] satisfied forK uniformly distributed on

[0,1]), sinced can be chosen arbitrarily small, it follows that
—e(B MI(d|I)—1 as B'—. (23

Therefore, ifK €[ 0,1] uniformly, we have

R 1
—e(/B’,)\)~|J3|=e*"K0=f e MdK~1/M\ as N—,
0

(24)

and we setc, =\ for this distribution, as in Eq(7). Thus
B'=pc,=BN and Eg. (21) will indeed guarantee\
=o[log(B')]. A similar calculation for the distribution of Eq.
(5), discussed in Sec. Il A, results ;y~\+1, and so we

may choose, =\. More generally, one chooseg~ 1/|J’(§|,

class of models behaves similarly to the ordinary EA spin
glass at least for very low, nonzero temperatures. To keep
matters simple, we’ll assume that for some rangel,othe
ordinary EA spin glass undergoes a phase transition at some
T.(d)>0, such that below that temperature there is a spin
glass phase with broken spin flip symmetry, and with the
number(and organizationof pure states not depending @n

for 0<T<T,(d).

That our class of models should behave similddy 8
<) to ordinary EA models, in terms of numbers and orga-
nization of pure states g3 changes, is not immediately ob-
vious because the couplings in our models are temperature
dependent. It does seem reasonable to expect, though, that so
long as the couplings depend weakly @h our models
should behave similarly to more conventional ones. How-
ever, we can improve on this expectation and show that in
fact this follows from a natural universality hypothesis.

The universality we have in mind is that the above as-
sumption about ordinary EA spin glasses is valid separately
for each fixed finitex. Thus there will be a critical inverse
temperaturg3.(\) <o for the Hamiltonian Eq(1) with cou-
plings Jy, = ex,c e M x. In order to satisfy our second re-
quirement,\ has to grow slowly enough witf® (or equiva-
lently, 8 has to grow rapidly enough witR) so that forg

= Bo,

BN)=>Be(N). (25

So, for example, ii\(By) =1 and the corresponding spin
glass model is in its lowl' spin glass phase, the inequality
(25) will guarantee that the sequence of models with running
A>1 remain within their corresponding low spin glass
phase. The above inequality can always be satisfied consis-
tently with the other condition&l) and (3); all that needs to
be done is to choosk to grow sufficiently slowly withg.

The remaining question will be whether the constraints im-
posed by condition$l) and (3) are compatible; we reserve
that for the following section.

as discussed in Sec. Il, to obtain a finite, nonzero energy

density as temperature goes to zero.

C. Comparison to phase behavior of ordinary EA models

D. Ground state behavior of the zero temperature limit

We now turn to a central question in the analysis of our
models, which is how slowlyx must vary withg3 in order

We have shown that the first of our requirements, that theéhat condition(3) above is satisfied, i.e., whether the Gibbs

thermodynamics of our class of models behave properly irstates of our models at positive temperature are increasingly
the zero temperature limit, can be met, and have shown hosupported, as temperature is lowered, on spin configurations
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that are ground states of the highly disordered model, anferromagnets, do not lead to a contradiction ferd<8.
whether this constraint is compatible with conditidh). In fact, they do not, for at least two reasons. One of them,

Consider again a fixetarbitrary volume A centered at already discussed above, is the lack of an appearance of in-
the origin, withany fixed boundary condition chosen inde- terface states in the metastdigith coupling independent
pendently of the coupling realization. LAE(\) denote the  poundary conditions We have not argued, even for spin
energy difference between the lowest-energy statd imat  glasses, that there are absolutely no more than two pure
given  and the first excited state. Then conditié®) is  states ford<8, but only that not more than two appear in the
satisfied if BAE(A(B))—> as B—, because the lowest- metastatgand that these are the physically relevant pnes
energy state goes tg the ground state of the highly disordergel, oth ordinary EA spin glasses @8 and ordinary dis-
model (for that BC, in that volumpas A — . _ ordered ferromagnets in al the metastate with free or pe-

We again study this question in the context of a particulag;, gic (or randor BC's should exhibit no more than a single
model, namely wher is chos;an un|forr11>l\¥< from the inter- pair of pure states. Indeed, in the highly disordered ferro-
val [0,1]. We have here thal,~heye "™, As A gets magnet even fod> 8, the free or periodi¢but not random

large for fixedL, the first excited state corresponds to the . : . )
(multi-) spin flip that changes only the smallest magnitudeBC metastate is supported only on the single pair of homo

coupling in the(wired BC) invasion treg(see Refs[15,17) geneously magnetized ground stofes, 17)

from satisfied to unsatisfied. But for the distribution ChosenTk Btuht one m|?ht object that :jn thekferrorrr]lagrlet shettmg,Bu(r:],-
the magnitude of this coupling is larger tharexg —\], so Ike the spin glass case, one does know now 1o choose S,

that at anyx, AE(\)>\e~*. Therefore namely of the Dobrushin type, so that one can obtain Gibbs
’ ' ’ states with interfaces in the thermodynamic limit and met-
BAE(N)=pre }, (26)  astates supported on them. For example, by taking a mixed

BC with the Dobrushin “equator” between the plus and mi-
so if A grows as logg) or slower, condition(3) is satisfied nus parts of the boundary occuring at a variety of heights
(for this particular distribution oK). with various weights, one could obtain a metastate supported

Condition(1) requires a slightly stronger constraint, given on many different pure interface states. So, wouldn't the fact
by Eq.(21), which is certainly compatible with the constraint that for 4<d<8 the zero temperature limit of the metastate
given above. It is gratifying that both conditions requiréo  could not be supported on more than two ground states still
grow slowly with 8, as initially anticipated. It might be that contradict our reasoning that the number of ground states in
condition (2) would requireh to grow even more slowly the metastate at zero temperature is an upper bound for the
with B, but in any event poses no conflicts with the othernumber of pure states at very low temperature?
constraints. Here is where the second reason for a distinction between

The procedure given here can be adapted for other distrierromagnets and spin glasses comes into play. It concerns
butions, but it is already sufficient that an explicit examplethe universality hypothesis of our argument that for any fixed
can be constructed of a model with all of the desired propi <o the low temperature phase structure of a spin glass

erties listed earlier. should be qualitatively the same, regardless of the value of
\. For spin glasses, this seems a perfectly plausible working
V. DISORDERED FERROMAGNETS hypothesis; indeed, if this were not so, then, e.g., a Gaussian

distribution could have a different loW thermodynamic
The basic argument of this paper is that for the modelstructure, in terms of pure state multiplicity, from a uniform
with temperature-dependent couplings as in@pfand with  distribution on[ —J,J], or a = J spin glass. But this is not
properly chosert, and\ ()], the absence of more than a likely; it is expected that only nonuniversal features such as
single pair of ground states gt=« for d<8 is evidence for T.(d) depend on the coupling distributiqassuming that it
no more than two pure states in ordinary EA spin glass modis symmetric about zero and without slowly decaying jails
els with fixed couplings at very low temperatures. But this is not so for disordered ferromagnets, where there
A potential flaw in this line of reasoning seems to arise inare no energy cancellations along an interface—unlike in
the case of disordered ferromagnets, corresponding to th&pin glasses. This may well lead to a greater sensitivity of
elimination of the random signs,, in Eq. (2). After all,  interface stability to the strength of the disorder. It seems
highly disordered ferromagnets also have only a single paiquite plausible, as suggested to us by Bovier antskaj that
of ground states fod<8 [15,17], but ordinary disordered for some dimensionsl=4, the usual interface states ob-
ferromagnets are expected to have multiple pure states faained through normal Dobrushin BC's could perhaps disap-
d=4 [32]—namely, the interface stat¢33,34] obtained by pear for\ above some critical valuk <o, even for arbi-
using Dobrushin boundary conditions. Further, this expectatrarily low temperature. That is, fok<\., the interface
tion is strongly supported by the rigorous results of Bovierwould be flat for bothT=0 and smallT>0, but for A
and Kuske concerning the existence fo=4 of such inter- >\, the interface would be rough fany T>0 (and per-
face states in solid-on-soligBOS models[35]. Indeed, the haps also foiT=0).
existence of such interface states in ferromagnets motivated Our analysis suggests that this is indeed sodfer8, so
Bovier and Fralich to argue that there are more spin glassthat there would be only two pure stat@wven for the mixed
pure states il=4 thand=3 (see Sec. 6.4 di36]). So we Dobrushin BC metastate described abofar ordinary dis-
need to ask why our arguments, when applied to disorderedrdered ferromagnets at very low temperatungsviding
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the disorder is sufficiently (but not infinitely) strangor 4 However, we are unaware of any natural examples where
=<d<8, this could be a consequence of the strong disordethe number of ground states senaller than the number of
either completely destabilizing the interface states so thgoure states at arbitrarily low temperat#2]. For the spin
they are entirely absent, or else of partially destabilizingglass, we are looking at an even weaker claim—namely, that
them so that finding them would require Dobrushin typethe number of pure states in theetastateloes not decrease
BC's, but with acoupling-dependeng¢quator(at a noncon- as temperature is lowered. That is, it is sufficient to consider
stant height only incongruent pure states, as discussed in Sec. lll.
These considerations enable us to draw a set of interesting
conclusions from our analysis of these models. The most
VI. DISCUSSION natural, and obvious, one is that thember of ground states
in the zero-temperature highly disordered metastate (e.g.,
In this paper we have constructed a class of nearestith free or periodic boundary conditions) provides an up-
neighbor spin glass models witbnusual coupling distribu-  per bound to the number of pure states at very low tempera-
tions depending on a disorder strength parametiat itself  ture seen in realistic spin glass modelEhis ground state
is temperature dependent. These models are designed to hasteucture is known: th& =0 metastate of the highly disor-
the property that their thermodynamic equilibrium propertiesdered model is supported on a single pair of ground states
at low temperaturd should be the same as for models with below eight dimensions, an@incountably infinitely many
more familiar distributionge.g., =J or Gaussia)) but they  above eight[15,17. Our analysis therefore provides evi-
have the rare advantage that their ground state structure é&nce in favor of the existence of no more than a single pair
known. The basic assumption of this paper is that a nearestf pure states at low temperatures in realistic spin glass mod-
neighbor Ising spin glass model with any “reasonable” cou-els below eight dimensiorg3]. (This conclusion is consis-
pling distribution—i.e., symmetric about zero, and with tent, of course, with there being only a single pure state,
small or zero weight on very large coupling magnitudes—either paramagnetic or otherwise, at all nonzero temperatures
will display qualitatively equivalent thermodynamics at fixed in some or all of these dimensioh€ur analysis does not
d (e.g., the presence or absence of a phase transition, tlalow us to draw conclusions about what happens above
number and organization of pure states in the spin glassight dimensions.
phase, etg—at least for very low temperature. While this  There are two other logical possibilities, either of which
remains an assumption, it is a common one in theoreticalvould also be quite interesting. It could be that our general
spin glass studies—so, for example, the thermodynamics ahtuition about the behavior of the metastate as a function of
two extreme cases, theJ and Gaussian distributions, are temperature is violated here, so that the number of ground
usually assumed to be the safi¥]. states issmallerthan the number of pure states in some di-
All of the models discussed here have the desired propemensions. In other words, in these models there might be a
ties at finite\ (i.e., whenT>0). At infinite A (T=0) they jump in the number of thermodynamic states, from larger to
do not, and we make no claims as to whether gngund  smaller, in the metastate at zero temperature. We cannot rule
stateproperties of ordinary spin glasses can be inferred fronout this possibility, other than to note that the discovery of a
these highly disordered models. But the interesting aspect aflass of models in which this occurs raises the interesting
the analysis is that, while the thermodynamic properties apossibility that it might occur elsewhere also.
nonzero temperature cannot be directly solved for, the Indeed, a jump presumably does occur in the ordinary
ground state properties of our models can, and the analysis two-dimensional2D) EA Ising spin glass—but it goes in the
Sec. IV enables us to infer properties of realistic spin glassther, more natural, direction, i.e., from smaller to larger as
models at low but nonzero temperatures. the temperature is lowered to zero. The 2D spin glass is
In general, the number of pure states for a given systerbelieved to be paramagnetic at all nonzero temperatures, and
remains the same or increagas a phase transition pojrds  has at least a pair of ground states at zero temperature. Our
temperature decreases. Of course, this general tendencydsenclusion is that, while we cannot logically exclude the
violated at a first-order phase transition, due to phase coexyossibility of a lowering of the number of thermodynamic
istence. One well-known example of such a violation is thestates as temperature goes to zero, it appears to be less likely
g-state Potts ferromagnet withsufficiently large(depending  than the number remaining the same or increasing.
ond), which atT, has its paramagnetic pure phase coexist- We mention in passing a third possibility—that the num-
ing with its g ordered pure phases, while beldw the para- ber of pure states in a typical spin glass metastate does not
magnetic phase is unstabléor rigorous proofs, se¢38—  behave in a continuous or even monotonic fashion at all as
40]). However, it remains the case, for these and othetemperature is loweref®1]. This possibility presents a pic-
systems with first-order transitions, that the number of purdure of the low-temperature spin glass phase far different
phases above the transition is no larger than the number b&om any that have appeared so far in the literature. An ex-
low. More interesting re-entrant behavior occurs in othertreme version of this possibilithearing some similarity to
systems—see, e.g., R¢#t1]. (A different type of reentrant eigenvalue dependence on disorder realizations in low di-
behavior occurs in some spin glasses in the temperaturenensional localization which we present primarily for illus-
concentration phase diagrdi®y, but this does not appear to trative purposes, is as follows. At arpw) temperature not
violate the general rule of number of pure states not decreaslepending on the coupling realizatigh there would be no
ing as temperature decreages. broken symmetryand a unique infinite volume Gibbs state
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for almost every7, but nevertheless, if a typicay were
picked first and then the temperatufewere varied, there
would be a(countably infinit¢ dense set of temperatures,
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